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1 Introduction and summary

Five dimensional supergravity is interesting from several points of view. Such a supergrav-

ity can be constructed by compactifying the eleven dimensional supergravity, on some six

dimensional manifolds e.g. CY3 or T 6. There are several supersymmetric solutions for the

five dimensional supergravity that preserve either one half or all of the supersymmetry [1].

These solutions contain three kinds of black objects which are half-BPS known as black

holes, black strings and black rings which their near horizon geometries are AdS2 × S3,

AdS3 × S2 and AdS2 × S1 × S2 respectively. Each of these solutions has a specific charge

configuration. A black hole has only electric charges, a black string has only magnetic

charges, while a black ring has both electric and magnetic charges. A nice review on these

black solutions of N = 2 five dimensional supergravity is [2].

Black ring is the first example of a black object with a non-spherical horizon topology

and asymptotically flat geometry which carries angular momentum along the S1 direc-

tion [3]. Furthermore, the existence of this solution implies that the black hole uniqueness

theorems can not be extended to five dimensions, except in the static case [4]. The gen-

eralization of the uniqueness of black holes to five dimensions is studied in [5], where it

is shown that the dipole charge appears in the first law of thermodynamics in the same

manner as a global charge. Therefore there exist black objects with the same global charges
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but with different horizon topologies. Some other developments are listed in [6]–[11]. For

a good review on black ring see [12].

In this paper we study some features of the supersymmetric large black rings in the

five dimensional N = 2 supergravity which have the non-zero classical horizon area. Large

black rings are half-BPS and in the near horizon limit they exhibit supersymmetry en-

hancement [13]. We want to investigate the symmetry of the near horizon geometry of the

supersymmetric black rings. For this purpose, we note that N = 2n supergravity in five

dimensions with 8n real supercharges has an Sp(2n) R-symmetry group with the supersym-

metry parameter εi, i = 1, . . . , 2n, transforming as 2n representation. Using this fact, one

can solve for the supersymmetry spinor and calculate the global part of the superalgebra.

Doing so, we show that the global part of the superalgebra is OSp(4∗|2) × U(1), which is

similar to the small black string obtained in [14].

The most important reason for investigating the supergroup of the near horizon geom-

etry of the black objects is the AdS/CFT correspondence. AdS2/CFT1 correspondence

is not well-defined yet in contrast to the higher dimensional cases (see for example [15]).

Motivated by this phenomenon, the symmetry of the near horizon geometry of the small

black hole solutions of N = 2, 4 supergravity in five dimensions is studied in [16]. Lapan

et al in [14], study the symmetry of the near horizon geometry of small black string solu-

tions to investigate AdS3/CFT2 correspondence, which in principle gives some information

about AdS2/CFT1 via dimensional reduction. Some recent results on the AdS3/CFT2

correspondence and the small black strings can be found in [17]. It seems that for studying

AdS2/CFT1 from AdS3/CFT2, the black ring is a better starting point than the black

string since the fibration of S1 over AdS2 is explicit.1 Thus our study of the near horizon

physics of the black ring might shed a new light on this subject.

An important feature of supersymmetric black objects is the attractor mechanism. The

attractor mechanism determines the value of the scalar fields near the horizon independent

of their asymptotic values, and also implies the enhancement of supersymmetry near the

horizon [19]. Attractor mechanism as reformulated by Sen, which is called the “entropy

function formalism”, can be used to calculate the entropy of black holes with AdS2×X near

horizon geometry in diverse dimensions [20]. In [21–23] the entropy function formalism is

applied to black rings. As mentioned above, the near horizon geometry of the black ring

solution is AdS2 × S1 × S2, where S1 is fibred nontrivially over AdS2. This phenomenon

as well as the Chern-Simons term in the five dimensional supergravity frustrates a direct

application of the entropy function formalism in this case.2 In fact there are two problems in

applying the entropy function method to black rings. First, in the Wald formula [25] there

is a derivative of the Lagrangian density with respect to the Riemann tensor components

which for AdS2 ×X near horizon geometry has only one independent component.3 But in

1The same property of black ring gives an opportunity to study the relation between 4D black holes and

5D black rings [18].
2The difficulty in incorporating the Chern-Simons term into the entropy function formalism is studied

in [24].
3Interestingly, for the D1-D5-P black holes, where a similar problem is encountered, a generalization of
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the case of the black ring near horizon geometry, the Riemann tensor has four independent

components since S1 is fibred non-trivially over AdS2.
4 Second, the Chern-Simons term

in the Lagrangian density is not gauge invariant,5 while in the entropy function formalism

the gauge invariance of the Lagrangian density is assumed. We study the entropy function

formalism for the black ring and explain how both of these problems can be resolved by

dimensional reduction along the S1. By such a dimensional reduction, the near horizon

geometry reduces to AdS2 × S2, which has only one relevant independent Riemann tensor

component, and the Chern-Simons term becomes a sum of gauge invariant terms.

In [28], Kraus and Larsen introduced the c-extremization approach for obtaining the

spacetime central charge of black objects with AdS3×Y near horizon geometry in a simple

way. Although, the c-extremization is introduced for black objects with a globally AdS3

component of the near horizon geometry, we show that by applying this method to the

black ring which horizon geometry locally looks like AdS3 × S2, one obtains results which

are in agreement with the outcome of the entropy function formalism and microscopic

calculations of the black ring entropy [11, 12, 29, 30].

We recalculate the microscopic entropy by the Kerr/CFT correspondence [31], which

is intrinsically a generalization of Brown-Henneaux approach [32] to AdS/CFT correspon-

dence [33]. Choosing an appropriate boundary condition we show that the asymptotic

symmetry group of the near horizon of supersymmetric black ring contains a Virasoro al-

gebra. The corresponding central charge equals the c-extremization result. By defining

the Frolov-Thorne temperature [35] and using the Cardy formula we calculate the CFT

entropy and show that it equals the Bekenstein-Hawking entropy.

The main results of this work are that in five dimensional N = 2 supergravity the global

part of the near horizon supergroup of the large black ring is OSp(4∗|2) × U(1). At the

leading order, the entropy function, c-extremization and Brown-Henneaux approaches are

in agreement with each other and with the microscopic results obtained in [11, 12, 29, 30].

The paper is organized as follows. In section 2 we review black ring solution of five

dimensional N = 2 supergravity and its near horizon geometry. In section 3 we show

the supersymmetry enhancement near the horizon of black ring and determine the global

part of the superalgebra. In section 4 we apply the entropy function, c-extremization and

Brown-Henneaux formalisms for large black rings where we show that the macroscopic and

microscopic entropies of black rings are equal to each other. In appendix A Killing vectors

of AdS2×S
1 component of the black ring near horizon geometry, used in section 3 are given.

2 N = 2 5D black rings

In this section we briefly review the N = 2 5D black ring solution in superconformal formal-

ism. In this approach the symmetry group of supergravity is enlarged to superconformal

group which can be reduced to the initial model by imposing a suitable gauge fixing con-

the entropy function formalism is found in [26], which can not be applied in the black ring problem.
4One encounters a Similar problem in the case of four dimensional spinning black holes. Applying

entropy function formalism for spinning black holes is studied in [27].
5The Chern-Simons action is gauge invariant up to a boundary term.
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dition. The supersymmetry variations of field content are independent of the Lagrangian

and one can consequently apply these variations at any level of corrections.

2.1 Basic setup

The field content of superconformal gravity are arranged in Weyl, vector and hypermul-

tiplets. The bosonic fields of Weyl multiplet are the vielbein eaµ, an auxiliary 2-form field

vab and an auxiliary scalar field D. The bosonic part of each vector multiplet contains a

1-form gauge field AI and a scalar field XI , where I = 1, . . . , nv labels the gauge group.

The hypermultiplet contains scalar fields Ai
α, where i = 1, 2 is the SU(2) doublet index

and α = 1, . . . , 2n refers to USp(2n) group.

In the off-shell formalism the bosonic part of the action of N = 2 supergravity in five

dimensions at the leading order is [36]

I =
1

16πG5

∫

d5x
√

|g|L0, (2.1)

in which

L0 = ∂aA
i
α∂

aAα
i + (2ν + A2)

D

4
+ (2ν − 3A2)

R

8
+ (6ν −A2)

v2

2
+ 2νIF

I
abv

ab

+
1

4
νIJ(F

I
abF

J ab + 2∂aX
I∂aXJ) +

e−1

24
CIJKǫ

abcdeAIaF
J
bcF

K
de . (2.2)

A2 = Ai
αA

α
i , v2 = vabv

ab and

ν =
1

6
CIJKX

IXJXK , νI =
1

2
CIJKX

JXK , νIJ = CIJKX
K , (2.3)

where CIJK are the intersection numbers of the internal space. The fermion fields are the

gravitino ψiµ and the auxiliary Majorana spinor χi which are in the Weyl multiplet, the

gaugino ΩIi in the vector multiplet and hyperino ζα in the hypermultiplet.

As we are interested in supersymmetric bosonic solutions, in which fermion fields are

set to zero and the solution is invariant under supersymmetry variations, we concentrate on

the study the bosonic terms of the supersymmetry variations of fermions which are given

as follows6

δψiµ = Dµε
i +

1

2
vabγµabε

i − γµη
i,

δχi = Dεi − 2γcγabD̂avbcε
i + γabR̂ab(V )ijε

i − 2γaεiǫabcdev
bcvde + 4γabvabη

i,

δΩIi = −
1

4
γabF Iabε

i −
1

2
γa∂aX

Iεi −XIηi,

δζα = γa∂aA
α
i − γabvabε

iAα
i + 3Aα

i η
i, (2.4)

6Here γa1a2···am
= 1

m!
γ[a1

γa2
· · · γam] which is antisymmetric in all indices. Also the covariant curvature

R̂ij
µν is defined by R̂ij

µν = 2∂[µV ij

ν]
−2V i

[µ kV kj

ν]
+ fermionic terms, where V ij

µ is a boson in the Weyl multiplet

which is in 3 of the SU(2). For the solution we are going to consider, this term vanishes.
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where δ ≡ ǭiQi + η̄iSi + ξaKKa,
7 and the covariant derivatives are defined by

Dµε
i =

(

∂µ +
1

4
ω ab
µ +

1

2
bµ

)

− V i
µ jε

j , (2.5)

D̂µvab = (Dµ − bµ) vab = ∂µvab + 2ω c
[avb]c − bµvab, (2.6)

in which bµ is a real boson in the Weyl multiplet and is SU(2) singlet [36].

There is a well-known gauge to fix the conformal invariance of the off-shell formalism

and reduce the superconformal symmetry to the standard symmetries of five dimensional

N = 2 supergravity,

A2 = −2, bµ = 0, V ij
µ = 0. (2.7)

In this gauge the last equation of (2.4) gives ηi in terms of εi as,

ηi =
1

3
γabvabε

i. (2.8)

In the gauge (2.7) and also after solving the equation of motion of the auxiliary fields D

and vab, the Lagrangian density (2.2) reduces to the standard form of the bosonic part of

N = 2 supergravity in five dimensions,

L0 = R−
1

2
GIJF

I
abF

Jab −GIJ∂aX
I∂aXJ +

e−1

24
CIJKA

I
aF

J
bcF

K
de ǫ

abcde, (2.9)

where

GIJ = −
1

2
∂I∂J (ln ν) =

1

2
(νIνJ − νIJ), (2.10)

and the supersymmetry variations (2.4) simplify as

δψiµ =

(

Dµ +
1

2
vabγµab −

1

3
γµγ

abvab

)

εi,

δχi =

(

D − 2γcγabDavbc − 2γaǫabcdev
bcvde +

4

3
(γabvab)

2

)

εi,

δΩIi =

(

−
1

4
γabF Iab −

1

2
γa∂aX

I −
1

3
XIγabvab

)

εi, (2.11)

where we have used (2.8). In section 3 we use these results for investigating supersymmetry

enhancement near the horizon of black ring solution.

2.2 Black ring solutions

The five dimensional N = 2 supergravity have several half-BPS black hole, black string

and black ring solutions. Here we review the large black ring solutions following [7]. These

solutions have both electric QI and magnetic pI charges. From eleven dimensional su-

pergravity point of view, these charges correspond to the M2 and M5-branes respectively

wrapping nontrivial cycles of the internal space. For simplicity we study the U(1)3 solution

7Qi is the generator of N = 2 supersymmetry, Si is the generator of conformal supersymmetry and Ka

are special conformal boost generators of superconformal algebra [36].
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which is the most symmetric solution. The M-theory configuration corresponding to this

solution consists of three M2-branes and three M5-branes oriented as [7]

Q1 M2 : 1 2 − − − − −

Q2 M2 : − − 3 4 − − −

Q3 M2 : − − − − 5 6 −

p1 M5 : − − 3 4 5 6 ψ

p2 M5 : 1 2 − − 5 6 ψ

p3 M5 : 1 2 3 4 − − ψ

(2.12)

where directions zi, i = 1 · · · 6, span the internal 6-torus and ψ is the ring direction of

black ring.

The 11D supergravity solution takes the form

ds211 = ds25 +X1(dz2
1 + dz2

2) +X2(dz2
3 + dz2

4) +X3(dz2
5 + dz2

6),

A = A1 ∧ dz1 ∧ dz2 +A2 ∧ dz3 ∧ dz4 +A3 ∧ dz5 ∧ dz6, (2.13)

where A is the three-form potential with four-form field strength F = dA.

The five dimensional solution is specified by a metric ds25, three scalars XI , and three

one-forms AI , with field strengths F I = dAI .8 In ring coordinates the solution is written

as follows9

ds25 = (H1H2H3)
−2/3 (dt+ ω)2 − (H1H2H3)

1/3 dx2
4,

dx2
4 =

R2

(x− y)2

[

(y2 − 1)dψ2 +
dy2

y2 − 1
+

dx2

1 − x2
+ (1 − x2)dφ2

]

,

AI = H−1
I (dt + ω) +

pI

2
[(1 + y)dψ + (1 + x)dφ],

XI = H−1
I (H1H2H3)

1/3 . (2.14)

In these coordinates, y = −∞ corresponds to the location of the ring, and QI and pI are

the electric and magnetic charges respectively. The harmonic functions HI are defined by10

H1 = 1 +
Q1 − p2p3

2R2
(x− y) −

p2p3

4R2
(x2 − y2), (2.15)

and the same for H2 and H3 with cyclic permutation. For simplicity we choose

Q1 = Q2 = Q3 = Q, p1 = p2 = p3 = p. (2.16)

The one-form ω which is related to the angular momentum of the solution is ω =

ωψdψ + ωϕdϕ with

ωψ =
p

8R2
(y2 − 1)[3Q − p2(3 + x+ y)] −

3p

2
(1 + y),

ωϕ =
p

8R2
(1 − x2)[3Q− p2(3 + x+ y)]. (2.17)

8All the fields are independent from internal space and exterior derivative d on AI is defined in five

dimensional space.
9for metrics, we use (+ −−−−) signature.

10R = 0 reduces the black ring solution to the BMPV solution [37] although the limit of R → 0 in (2.15)

is singular .

– 6 –
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The ADM charges of this solution are given by

M =
3π

4G5
Q,

Jψ =
π

8G5
p[6R2 + 3Q− p2], Jϕ =

π

8G5
p(3Q− p2). (2.18)

The coordinate ranges are

−∞ ≤ y ≤ 1, −1 ≤ x ≤ 1, 0 ≤ ψ ≤ 2π, 0 ≤ ϕ ≤ 2π. (2.19)

To make the above solution free of closed causal curves for y ≥ −∞, one requires that,

2p2L2 ≡ 2
∑

i<j

QipiQjpj −
∑

i

Q2
i p

2
i − 2R2p3

∑

i

pi ≥ 0, (2.20)

where

p = (p1p2p3)
1/3, Q1 = Q1 − p2p3, Q2 = Q2 − p1p3, Q3 = Q3 − p1p2. (2.21)

For (2.16),

L =

√

3

[

(Q− p2)2

4p2
−R2

]

, (2.22)

There is a nice review on this solution by Emparan and Reall [12].

2.3 Near horizon geometry

In [6, 21] it is shown that in a comfortable coordinate system the near horizon limit of the

black ring solution (2.14) becomes,

ds2 = −p2

(

dr2

4r2
+
L2

p2
dψ2 +

Lr

p
dtdψ

)

−
p2

4
(dθ2 + sin2 θdφ2), (2.23)

which is the product of a locally AdS3 with radius p and an S2 with radius p
2 . This metric

can be written as follows,

ds2 =
p2

4

(

r2dt2 −
dr2

r2

)

− L2
(

dψ +
pr

2L
dt
)2

−
p2

4

(

dθ2 + sin2 θdφ2
)

, (2.24)

where the range of coordinates are

0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π. (2.25)

The near horizon geometry (2.24) is AdS2 × S1 × S2 in which the S1 ×AdS2 component,

locally looks like the BTZ black hole with radius r+ = L. Furthermore, in these coordinates

the near horizon limit of the field strengths of the gauge fields AI (2.14) are

F Iθφ = −
pI

2
sin θ, (2.26)

– 7 –
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and the attractor values of scalars XI are

XI =
pI

(1
6CIJKp

IpJpK)1/3
. (2.27)

As is well-known, one can in principle obtain considerable information about a black

object by studying the corresponding near horizon geometry. In the next two sections we

study the enhancement of supersymmetry near the horizon and apply the entropy function,

the c-extremization and Brown-Henneaux formalisms to obtain the global supergroup of

the near horizon geometry and the entropy of black ring.

3 Enhancement of supersymmetry

The bosonic supersymmetric solution of any supersymmetric theory should be invariant

under supersymmetry variations of fermions. Thus both fermions and their supersymmetry

variations should be equal to zero.

For studying enhancement of supersymmetry near the horizon of any half-BPS black

object one should check if it is possible to make supersymmetry variations of fermions of

the theory equal to zero without imposing any additional condition on the Killing spinor

εi. In our case the supersymmetry variations of auxiliary Majorana spinor χi and gaugino

ΩIi in (2.11) give no constraint on spinor εi, but imposes the following constraints on the

bosonic auxiliary fields,

F Iµν = −
4

3
XIvµν , D =

8

3
v2 ǫabcdDavbc = 0, Dbvab −

1

3
ǫabcdv

bcvde = 0. (3.1)

Thus we only investigate the gravitino variation in ψi (2.11) for supersymmetry enhance-

ment.

3.1 Killing spinor

The calculations will be easier in non-coordinate basis. The components of vielbein for the

near horizon geometry of the black ring solution (2.24) are

et̂ =
pr

2
dt, er̂ =

p

2r
dr, eθ̂ =

p

2
dθ, eφ̂ =

p sin θ

2
dφ, eψ̂ = L

(

dψ +
pr

2L
dt
)

, (3.2)

and the inverse components are given by

et̂t =
2

pr
, er̂r = −

2r

p
, eθ̂θ = −

2

p
, eφ̂φ = −

2

p sin θ
, eψ̂ψ = −

1

L
, et̂ψ = −

1

L
. (3.3)

By using the explicit relation for spin connection,

(ωµ)
ab =

1

2
eνa(∂µe

b
ν − ∂νe

b
µ) −

1

2
eνb(∂µe

a
ν − ∂νe

a
µ) −

1

2
eρaeσb(∂ρeσc − ∂σeρc)e

c
µ, (3.4)

one can show that the non zero components of spin connections are

(ωt)
t̂r̂ = −

r

2
, (ωt)

r̂ψ̂ =
r

2
, (ωr)

t̂ψ̂ =
1

2r
, (ωφ)

θ̂φ̂ = cos θ, (ωψ)t̂r̂ =
L

p
. (3.5)

– 8 –
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Supersymmetry variation of gravitino in (2.11) for our background (2.24) and (2.26)

simplifies to

δψiµ =

(

∂µ +
1

4
ω ab
µ γab + vθφγ

θφ
µ −

2

3
γµγ

θφvθφ

)

εi. (3.6)

By using the attractor value of the scalars (2.27) together with the value of field

strengths (2.26) and the first equality in (3.1) one obtains,

vθ̂φ̂ =
3

2p
. (3.7)

Now, setting all the components of gravitino variation (3.6) equal to zero gives the

following equations,

∇tε
i =

(

∂t +
r

4
γ t̂r̂(1 − γ r̂θ̂φ̂) −

r

4
γψ̂r̂(1 − γ r̂θ̂φ̂)

)

εi = 0,

∇rε
i =

(

∂r −
1

4r
(γ r̂θ̂φ̂ + γ t̂ψ̂)

)

εi = 0,

∇θε
i =

(

∂θ −
1

2
γφ̂
)

εi = 0,

∇φε
i =

(

∂φ +
1

2
cos θγ θ̂φ̂ +

1

2
sin θγ θ̂

)

εi = 0,

∇ψε
i =

(

∂ψ −
L

2p
(γ t̂r̂ + γθ̂φ̂ψ̂)

)

εi = 0. (3.8)

One can easily show that integrability condition,

[∇µ,∇ν ]ε
i = 0, (3.9)

is automatically satisfied without imposing any projection on the Killing spinor εi. Thus

all the supersymmetry is restored near the horizon.

Assuming γ t̂ψ̂r̂θ̂φ̂ = 1 equations (3.8) simplify as

∇tε
i =

(

∂t +
r

2
(γ t̂r̂ − γψ̂r̂)

)

εi = 0,

∇rε
i =

(

∂r −
1

2r
γ t̂ψ̂
)

εi = 0,

∇θε
i =

(

∂θ −
1

2
γφ̂
)

εi = 0,

∇φε
i =

(

∂φ +
1

2
cos θγ θ̂φ̂ +

1

2
sin θγ θ̂

)

εi = 0,

∇ψε
i = ∂ψε

i = 0. (3.10)

There are two solutions corresponding to the projections γ r̂θ̂φ̂εi(±) = ±εi(±). For γ r̂θ̂φ̂εi = εi
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the above equations simplify to,

∇tε
i = ∂tε

i = 0,

∇rε
i = (∂r −

1

2r
)εi = 0,

∇θε
i =

(

∂θ −
1

2
γφ̂
)

εi = 0,

∇φε
i =

(

∂φ +
1

2
cos θγ θ̂φ̂ +

1

2
sin θγ θ̂

)

εi = 0,

∇ψε
i = ∂ψε

i = 0. (3.11)

It is easy to show that there are two solutions for these equations,

εi =

√

r

l
e

1
2
γφ̂θe−

1
2
γθ̂φ̂φεi0, λi = l

(

−t+
1

r
γ t̂r̂
)

εi, (3.12)

where l = p/2 is the radius of both AdS2 and S2 part of the near horizon geometry (2.24)

and εi0 is a constant spinor satisfying γ r̂θ̂φ̂εi0 = εi0. The relation between two different

chiralities is εi0(−) = γ t̂r̂εi0(+).

It is enlightening to note that the Killing spinors solution (3.12) depends only on

the radius of AdS2 and S2 which is proportional to the cube root of the central charge,

c = 6p3 (4.9).

3.2 Near horizon superalgebra

As it is shown in appendix A the isometries of AdS2 × S1 are generated by,

K1 =
1

2
(t2 + r−2)∂t − rt∂r −

p

2Lr
∂ψ, K2 =t∂t − r∂r,

K3 =∂ψ, K4 =∂t, (3.13)

K5 =e
2L
p
ψ
(

1

r
∂t + r∂r −

p

2L
∂ψ

)

, K6 =e−
2L
p
ψ
(

1

r
∂t − r∂r −

p

2L
∂ψ

)

.

The algebra associated to these isometries is as follows

[K1,K2] = −K1, [K1,K4] = −K2, [K2,K4] = −K4,

[K3,K5] =
2L

p
K5, [K3,K6] = −

2L

p
K6, [K5,K6] = −

p

L
K3. (3.14)

Using the following redefinitions,

pK1 →L+
1 ,

2

p
K4 →L+

−1, −K2 →L+
0 ,

K5 →L−
1 , K6 →L−

−1, −
p

2L
K3 →L−

0 , (3.15)

the algebra (3.14) simplifies to,

[L±
m, L

±
n ] = (m− n)L±

m+n, m, n = ±1, 0. (3.16)
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This may be identified to the left and right moving global parts of the CFT2 which is dual

to this locally AdS3 geometry. Since the generators K5 and K6 defined in eq. (3.13) are

not single valued functions of ψ ∼ ψ + 2π the SL(2)L is broken to U(1) generated by K3.

Consequently the global symmetry of the near horizon geometry is U(1)L × SL(2)R.

The action of these generators on the spinors εi and λi (3.12) can be defined by the

Lie derivative LKε
i = (KµDµ + 1

4∂µKνγ
µν)εi, which gives,

L+
−1λ

i = − εi, L+
0 λ

i = −
1

2
λi, L+

0 ε
i =

1

2
εi, L+

1 ε
i =λi,

L+
−1ε

i =0, L+
1 ε

i =0, L−
mε

i =0, L−
mλ

i =0, (3.17)

Considering a correspondence between εi and λi and the G− 1
2

and G 1
2

modes of su-

percurrent G then (3.17) simplify to

[L+
m, Gr] =

(m

2
− r
)

Gm+r, [L−
m, Gr] = 0. (3.18)

To complete the algebra, we should also study the behavior of the Killing spinors (3.12)

under the generators of S2. These generators are

J3 = −i∂φ, J± = e±iφ(−i∂θ ± cot θ∂φ). (3.19)

Since γ r̂θ̂φ̂ and γθ̂φ̂ commute with each other one can choose

γθ̂φ̂εi0 = ±iεi0, (3.20)

which gives

J3εi = ±
1

2
εi, J3λi = ±

1

2
λi. (3.21)

Thus both εi and λi are in the 2 representation of the SU(2) group which is generated by

J is. If one starts with a constant spinor which satisfies γθ̂φ̂εi0 = −iε0,
11 and define

ξ+ =

√

r

l
e

1
2
γφ̂θe

i
2
φε0, ξ− =

√

r

l
e

1
2
γφ̂θe−

i
2
φγθ̂ε0, (3.22)

one verifies that ξa are in the 2 representation of the SU(2) group, J±
0 ξ

a
± = 0 and

J±
0 ξ

a
∓ = ξa±.

Our results so far can be organized into symplectic-Majorana killing spinors12

ε1 =

(

ξ+
iξ−

)

, ε2 =

(

−iξ+
−ξ−

)

, ε3 =

(

ξ−
−iξ+

)

, ε4 =

(

iξ−
−ξ+

)

, (3.23)

where each εI transforms as 2 of Sp(2) and corresponds to GI
− 1

2

. In the same manner one

can define

λI = l

(

−t+
1

r
γ t̂r̂
)

εI (3.24)

11Normalization is ε†0ε0 = 1/2.
12symplectic-Majorana condition is ζ

i
= ζ†

i γ t̂ = ζiT
C.
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which corresponds to GI1
2

and also transforms as 2 of Sp(2).

To complete the near horizon superalgebra we need to compute the anticommutators of

supercharges. To do this we use the supersymmetry transformations of the five dimensional

supergravity given by [36, 38, 39],

{GIr , G
J
s } = lΩij

[

(ε̄Ir)
iγµ(εJs )j + (ε̄Js )iγµ(εIr)

j
]

∂µ

+
[

(ε̄Ir)iγ
θ̂φ̂(εJs )j + (ε̄Js )iγ

θ̂φ̂(εIr)
j
]

, (3.25)

where Ωij is a symplectic matrix which can be used for raising and lowering the indices

as follows,

χi = Ωijχj, χi = χjΩji, (3.26)

and we have chosen a basis Ω12 = 1. By plugging the supercharges (3.23) and (3.24)

into (3.25) we derive the anticommutators of the supercharges,

{

GI
± 1

2

, GJ
± 1

2

}

= −2δIJL+
±, (3.27)

and

{

GI
− 1

2

, GJ1
2

}

=











−2L+
0 2iJ3 + iσ3 2iJ2 + iσ1 −2iJ1 + iσ2

−2iJ3 − iσ3 −2L+
0 −2iJ1 − iσ2 −2iJ2 + iσ3

−2iJ2 − iσ1 2iJ1 + iσ2 −2L+
0 2iJ3 − iσ3

2iJ1 − iσ2 2iJ2 − iσ1 −2iJ3 + iσ3 −2L+
0











, (3.28)

where m,n = 0,±1, r, s = ±1
2 , I, J = 1, 2, 3, 4 and σa are the Pauli matrices. We can

summarize all the results to the following superalgebra,

{GIr , G
J
s } = −2δIJL+

r+s + (r − s)(Ma)
IJJa + (r − s)(NA)IJTA,

[

L+
m, L

+
n

]

= (m− n)L+
m+n, [L+

m, G
I
r ] =

(m

2
− r
)

GIm+r,
[

Jα, GIr
]

= (tα)IJGJr , [TA, GIr ] = (NA)IJGJr , (3.29)

where Ma and NA are the representation matrices for SU(2) and Sp(2), respectively and

TA are generators of Sp(2). Therefore the bosonic part of the global supergroup is

U(1)L × SL(2)R × SU(2) × Sp(2), (3.30)

while the isometry of the near horizon geometry of the black ring solution is U(1)L ×

SL(2)R × SU(2).13 The generators in (3.29) are null under the U(1)L generated by L−
0

given in (3.15). The extra Sp(2) in (3.30) can be identified with R-symmetry of N = 2

supergravity in five dimensions [14, 16].

Searching in the literature (for example see [42]) we found that there is a supergroup

with this bosonic part and supporting eight supercharges which is D(2, 1; 1) = Osp(4∗|2).

So we propose that (3.29) correspond to the Osp(4∗|2) × U(1).

13The symmetries of the near horizon geometry of the extremal black ring and four dimensional spinning

black holes are studied for example in [40] and [41] respectively.
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It is interesting to note that this supergroup is the same as the small black string

near horizon supergroup [14]. Of course, in [14] the superalgebra of small black string in

N = 4 five dimensional supergravity is calculated by embedding the solution of N = 2

supergravity. For this solution, the supergroup of near horizon is Osp(4∗|4) ×U(1), where

the Osp(4∗|4) part of superalgebra is

{GIr , G
J
s } = −2δIJLr+s + (r − s)(tα)IJJα + (r − s)(ρA)IJRA,

[Lm, Ln] = (m− n)Lm+n, [Lm, G
I
r ] =

(m

2
− r
)

GIm+r,
[

Jα, GIr
]

= (tα)IJGJr , [RA, GIr ] = (ρA)IJGJr , (3.31)

in which tα and ρA are the representation matrices for SU(2) and Sp(4) respectively and

RA are the generators of Sp(4). In [16], it was shown that this global part of superalgebra

in N = 4 supergravity is reduced to Osp(4∗|2) in N = 2.14 This result shows that in

AdS/CFT analysis black ring solution behaves like a small black string.

It is straightforward to repeat the above calculations when higher order corrections are

considered, as higher order corrections only modify p and L in the metric (2.24) [43]–[47].

Therefore, after adding e.g. the supersymmetric correction [36], the supersymmetry is still

enhanced near the horizon and the superalgebra does not change.

4 Near horizon physics

A special feature of the supersymmetric black ring is the geometry of the near horizon of

this solution such that an AdS2×S
1 is locally AdS3 (2.23)–(2.24). This special near horizon

topology allows one to apply both the entropy function [20] and the c-extremization [28]

formalisms on black ring. We also use Brown-Henneaux approach [32] to calculate the

CFT entropy of extremal black ring.

4.1 Entropy function

In this section we briefly review the entropy function formalism applied to the black ring

solution to calculate the corresponding macroscopic entropy [21–23].

In the entropy function formalism the entropy can be found from the extremum of the

entropy function,

S = 2π(eIqI − f), (4.1)

in which,

f =

∫

dxH
√

|gH |L, (4.2)

14It is interesting to note that Osp(4∗|2) factor is also present in the small black string [14], the small

black hole [16] and the large black ring solutions (3.29) of N = 2 supergravity in five dimensions.
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and qI is defined by qI = ∂f
∂eI . To apply the entropy function for the near horizon geometry

of the black ring one uses the ansatz [21]15

ds2 = v1(−r
2dt2 +

dr2

r2
) + v2(dθ

2 + sin2 θdφ2) + w(dψ2 + e0rdt)
2,

F I5rt = eI + aIe0, F I5θφ =
pI

2
sin θ, XI = M I , I = 1, 2, 3, (4.3)

where e0 is conjugate to the angular momentum of the ring. Extremizing the entropy

function (4.1) with respect to the v1, v2, w,M
I and N I gives,

v1 = v2 =
p2

4
, w =

p

2e0
, eI + e0N

I = 0, M I =
pI

(1
6CIJKp

IpJpK)1/3
. (4.4)

Using (4.4) and (4.1) one obtains,

Smac = 2πp2L. (4.5)

The same result is obtained in the off-shell formalism in [22].

4.2 c-extremization

In [28] Kraus and Larsen showed that for D-dimensional black objects with AdS3 × SD−3

near horizon geometry one can define the c-function as16

c(lA, lS) =
3Ω2ΩD−3

32πGD
l3Al

D−3
S L, (4.6)

which extremization with respect to the radii of AdS3 and S2, gives the average of the left

and right central charges of CFT dual of AdS3. As we have discussed in section 2 and as

can also be verified using the Killing vectors derived in the appendix A, the near horizon

geometry of the black ring solution, has locally an AdS3 component (2.23). Thus one can

expect that c-extremization formalism [28] can also be applied for black ring solution.

We consider the following ansatz,

ds2 =l2AdΩ
2
AdS3

+ l2SdΩ
2
S2, XI =mpI ,

F Irt =eI + e0a
I , F Iθφ =

pI

2
sin θ, vrt =v1vθφ = v2 sin θ. (4.7)

After solving the equations of motion of D, vab,m and aI one finds17

D =
12

p2
, m = p−1, v2 = −

3

8
p, v1 = 0, eI + e0a

I = 0, (4.8)

where p ≡ (1
6CIJKp

IpJpK)1/3.18 By extremizing the c-function one obtains,

lA = 2lS = p, c = 6p3. (4.9)

15In this section following the usual conventions in both the entropy function and the c-extremization

formalisms we use (− + + + +) signature and choose G5 = π/4.
16It was discussed in [28] that only the bulk part of the action contributes in this definition.
17These results can also be derived from the supersymmetry variations of fermions (2.11) [22].
18In U(1)3 supergravity which is the subject of our study in this paper, all pI are equal to each other and

denote them by p.
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In the semiclassical regime c ≫ 1, c ∼ cL ∼ cR, in which cL(R) is the left (right) central

charge of the CFT. In this limit, (cL − cR) is negligible as it is given by higher order

corrections, and c = 1
2(cL + cR) is given by the c-extremization method (4.9). Since

the black ring solution in N = 2 five dimensional supergravity corresponds to the (0, 4)-

CFT the microscopic entropy is given by the logarithm of the number of left moving

excitations [11, 12, 29, 30],19

Smic = 2π

√

cq̂0
6
, (4.10)

where [12]

q̂0 =
p1p2p3

4
+

1

2

(

Q1Q2

p3
+
Q2Q3

p1
+
Q3Q1

p2

)

(4.11)

+
1

4p1p2p3
[(p1Q1)

2 + (p2Q2)
2 + (p3Q3)

2] − Jψ

= pL2. (4.12)

Thus, at the leading order, the result of the c-extremization formalism (4.9) and microscopic

description of the entropy of the black ring are in agreement with the entropy calculated

by the macroscopic entropy function formalism (4.5),

Smac = Smic = 2πLp2. (4.13)

4.3 Brown-Henneaux approach

In this section we recalculate the microscopic entropy of supersymmetric black rings from

another viewpoint by using the Kerr/CFT formalism [31]. In this method, which is intrin-

sically a generalization of the Brown-Henneaux approach [32], the Virasoro generators of

the CFT dual are related to the asymptotic symmetry group (ASG) of the near horizon

metric. The asymptotic symmetry group (ASG) of a near horizon metric is the group of

allowed symmetries modulo trivial symmetries. By definition, an allowed symmetry trans-

formation obeys the specified boundary conditions [31]. A possible boundary condition for

the fluctuations around the geometry (2.24) is,

hµν ∼ O















r2 1/r2 1/r r 1

1/r3 1/r2 1/r2 1/r

1/r 1/r 1/r

1/r 1

1















, (4.14)

in the basis (t, r, θ, φ, ψ). It is easy to show that the general diffeomorphism preserving the

boundary conditions (4.14) is given by,

ζ =

[

C + O

(

1

r3

)]

∂t +
[

rǫ′(ψ) + O(1)
]

∂r + O

(

1

r

)

∂θ

+O

(

1

r2

)

∂φ +

[

ǫ(ψ) + O

(

1

r2

)]

∂ψ, (4.15)

19We are using the conventions of [29] for left and right moving central charges.
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where C is an arbitrary constant and ǫ(ψ) is the arbitrary smooth periodic functions of ψ.

By using the basis ǫn(ψ) = −e−inψ for the function ǫ(ψ), it is easy to show that the ASG

generates contains a Virasoro algebra generated by

ζn = −e−inψ∂ψ − in r e−inψ∂r, (4.16)

which satisfy [ζm, ζn] = −i(m− n)ζn+n.

The generator of a diffeomorphism has a conserved charge. The charges associated to

the diffeomorphisms (4.16) are defined by [34],

Qζ =
1

8π

∫

∂Σ
kζ [h, g], (4.17)

where ∂Σ is spatial surface at infinity and

kζ [h, g] =
1

2

[

ζν∇µh− ζν∇σh
σ
µ + ζσ∇νh

σ
µ +

h

2
∇νζµ

− h σ
ν ∇σζµ +

1

2
hνσ(∇µζ

σ + ∇σζµ)

]

∗ (dxµ ∧ dxν), (4.18)

in which ∗ denotes the Hodge dual in 5D. In the Brown-Henneaux approach [32] the central

charge is given by
1

8π

∫

∂Σ
kζm [Lζn , g] = −

i

12
c(m3 −m)δm+n,0. (4.19)

Plugging the metric (2.24) and diffeomorphisms (4.16) in (4.19) one obtains,

c = 6p3, (4.20)

which is in agreement with the c-extremization result (4.9).

The Frolov-Thorne temperature can be determined by identifying quantum numbers

of a matter field in the near horizon geometry with those in original geometry. For the

chiral CFT given by (4.16) a matter field can be expanded in eigen modes of the asymptotic

energy ω and angular momentum m as

Φ =
∑

ω,m,l

ϕωmle
−i(ωt−mψ)fl(r, θ, φ), (4.21)

Similar to [31] one can show that, here, the Frolov-Thorne temperature is

TFT =
1

2πe0
. (4.22)

The Cardy formula gives the microscopic entropy of chiral CFT (4.16) as follows,

SCFT =
π2

3
c TFT = 2πLp2, (4.23)

which is in precise agreement with the result obtained by utilizing the entropy function

and the c-extremization methods (4.13).

– 16 –



J
H
E
P
0
3
(
2
0
0
9
)
0
3
5

Acknowledgments

We would like to thank M. Alishahiha, H. Ebrahim and R. Fareghbal for useful comments

and discussions.

A Killing vectors of AdS2 × S1 geometry

In this appendix we derive the Killing vectors of AdS2 ×S1 geometry which is appeared in

the near horizon of black ring solution of N = 2 five dimensional supergravity. The metric

of this part is (2.23),

ds2 = −p2

(

dr2

4r2
+
L2

p2
dψ2 +

Lr

p
dψdt

)

, (A.1)

and Killing equation is

Xρ∂ρgµν + ∂µX
ρgρν + ∂νX

ρgµρ = 0. (A.2)

The components of Killing equation are

∂tX
ψ = 0, (A.3)

∂tX
r +

2Lr3

p
∂rX

ψ = 0, (A.4)

Xr + r∂tX
t + r∂ψX

ψ = 0, (A.5)

Xr − r∂rX
r = 0, (A.6)

∂ψX
r +

2Lr3

p
∂rX

t +
4L2r2

p2
∂rX

ψ = 0, (A.7)

∂ψX
t +

2L

pr
∂ψX

ψ = 0. (A.8)

Equations (A.3) and (A.6) show that,

Xψ = f(r, ψ), Xr = rg(t, ψ). (A.9)

So we can simplify (A.3)–(A.8) to obtain,

∂tg(t, ψ) +
2Lr2

p
∂rf(r, ψ) = 0, (A.10)

g(t, ψ) + ∂tX
t + ∂ψf(r, ψ) = 0, (A.11)

∂ψg(t, ψ) +
2Lr2

p
∂rX

t +
4L2r

p2
∂rf(r, ψ) = 0, (A.12)

∂ψX
t +

2L

pr
∂ψf(r, ψ) = 0. (A.13)

In (A.10) the first term is a function of t and ψ and the second term is a function of r and

ψ. Therefore, each term only is a function of ψ,

∂tg(t, ψ) = −
2Lr2

p
∂rf(r, ψ) = h(ψ), (A.14)
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and consequently,

g(t, ψ) = h(ψ)t + g1(ψ), f(r, ψ) =
p

2Lr
h(ψ) + f1(ψ). (A.15)

Now we can simplify (A.11)–(A.13) as,

h(ψ)t+ g1(ψ) + ∂tX
t +

p

2Lr
∂ψh(ψ) + ∂ψf1(ψ) = 0, (A.16)

∂ψh(ψ)t + ∂ψg1(ψ) +
2Lr2

p
∂rX

t −
2L

pr
h(ψ) = 0, (A.17)

∂ψX
t +

1

r2
∂ψh(ψ) +

2L

pr
∂ψf1(ψ) = 0. (A.18)

From (A.16) one finds

Xt = −

(

1

2
h(ψ)t2 + g1(ψ)t+

p

2Lr
∂ψh(ψ)t + ∂ψf1(ψ)t

)

+ I(r, ψ). (A.19)

(A.19) and (A.17) give

2∂ψh(ψ)t + ∂ψg1(ψ) +
2Lr2

p
∂rI(r, ψ) −

2L

pr
h(ψ) = 0. (A.20)

This implies that,

∂ψh(ψ) = 0 ⇒ h(ψ) = c1. (A.21)

Thus (A.15) simplifies as

g(t, ψ) = c1t+ g1(ψ), f(r, ψ) =
p

2Lr
c1 + f1(ψ), (A.22)

and (A.16)–(A.19) become

c1t+ g1(ψ) + ∂tX
t + ∂ψf1(ψ) = 0, (A.23)

∂ψg1(ψ) +
2Lr2

p
∂rX

t −
2L

pr
c1 = 0, (A.24)

∂ψX
t +

2L

pr
∂ψf1(ψ) = 0, (A.25)

Xt = −

(

1

2
c1t

2 + g1(ψ)t + ∂ψf1(ψ)t

)

+ I(r, ψ). (A.26)

By (A.26), eqs. (A.24) and (A.25) simplify to

∂ψg1(ψ) +
2Lr2

p
∂rI(r, ψ) −

2L

pr
c1 = 0, (A.27)

−
(

∂ψg1(ψ) + ∂2
ψf1(ψ)

)

t+ ∂ψI(r, ψ) +
2L

pr
∂ψf1(ψ) = 0. (A.28)

From (A.27) one obtains

I(r, ψ) = −
1

2r2
c1 +

p

2Lr
∂ψg1(ψ) + I1(ψ), (A.29)

– 18 –
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and so (A.28) becomes

− t
(

∂ψg1(ψ) + ∂2
ψf1(ψ)

)

+
p

2Lr
∂2
ψg1(ψ) + ∂ψI1(ψ) +

2L

pr
∂ψf1(ψ) = 0, (A.30)

which implies that,

∂ψg1(ψ) + ∂2
ψf1(ψ) = 0, (A.31)

p

2L
∂2
ψg1(ψ) +

2L

p
∂ψf1(ψ) = 0, (A.32)

∂ψI1(ψ) = 0. (A.33)

Thus,

g1(ψ) + ∂ψf1(ψ) = c′, (A.34)

∂ψg1(ψ) +
4L2

p2
f1(ψ) = c3, (A.35)

I1(ψ) = c4. (A.36)

Now we can simplify our results. From (A.34) and (A.35) one obtains,

− ∂2
ψf1(ψ) +

4L2

p2
f1(ψ) = c3 ⇒ f1(ψ) = c5e

2L
p
ψ + c6e

− 2L
p
ψ +

p2

4L2
c3, (A.37)

Therefore,

g1(ψ) = c2 +
2L

p
(c6e

− 2L
p
ψ − c5e

2L
p
ψ). (A.38)

Alternatively we can solve g1(ψ) as,

− ∂2
ψg1(ψ) +

4L2

p2
g1(ψ) =

4L2

p2
c2 ⇒ g1(ψ) = c7e

2L
p
ψ

+ c8e
− 2L

p
ψ

+ c2, (A.39)

which is consistent with the first solution. c8.

In summary,

I(r, ψ) = −
1

2r2
c1 −

2L

pr

(

c5e
2L
p
ψ + c6e

− 2L
p
ψ
)

+ c4, (A.40)

g(t, ψ) = c1t+ c2 +
2L

p
(c6e

− 2L
p
ψ − c5e

2L
p
ψ), (A.41)

f(r, ψ) =
p

2Lr
c1 + c5e

2L
p
ψ

+ c6e
− 2L

p
ψ

+
p2

4L2
c3. (A.42)

So,

Xt = −

(

1

2
c1t

2 + c2t

)

−
1

2r2
c1 −

2L

pr

(

c5e
2L
p
ψ + c6e

− 2L
p
ψ
)

+ c4, (A.43)

Xr = r

(

c1t+ c2 +
2L

p
(c6e

− 2L
p
ψ − c5e

2L
p
ψ
)

)

, (A.44)

Xψ =
p

2Lr
c1 + c5e

2L
p
ψ

+ c6e
− 2L

p
ψ

+
p2

4L2
c3. (A.45)
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Thus the killing vector expand as follows,

X = Xt∂t +Xr∂r +Xψ∂ψ

= −c1

(

1

2
(t2 + r−2)∂t − rt∂r −

p

2Lr
∂ψ

)

−c2 (t∂t − r∂r) + c3
p2

4L2
∂ψ + c4∂t

−c5
2L

p
e

2L
p
ψ
(

1

r
∂t + r∂r −

p

2L
∂ψ

)

−c6
2L

p
e
− 2L

p
ψ
(

1

r
∂t − r∂r −

p

2L
∂ψ

)

, (A.46)

and consequently, there are six isometries generated by,

K1 =
1

2
(t2 + r−2)∂t − rt∂r −

p

2Lr
∂ψ, K2 =t∂t − r∂r, (A.47)

K3 =∂ψ, K4 =∂t

K5 =e
2L
p
ψ
(

1

r
∂t + r∂r −

p

2L
∂ψ

)

, K6 =e−
2L
p
ψ
(

1

r
∂t − r∂r −

p

2L
∂ψ

)

.
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